
DISTRIBUTED COMPUTING

SYSTEMS

2 STANDARDS, PROTOCOLS OF DCS

1995 2000 201019901985

Remote Procedure

Call (RPC)

CORBA

(Common Request

Broker Architecture)

SOAP

Web-services
REST

HTTP, HTML

XML

Client-

server

Sockets

WWWNetworks

20051980

Java Remote
Method

Invocation (RMI)

JSON

Clouds

© GLEB RADCHENKO

3

INTRODUCTION: JEF BEZOS LETTER (2002)
 All teams will henceforth expose their data and functionality

through service interfaces.

 Teams must communicate with each other through these
interfaces.

 There will be no other form of interprocess communication
allowed: no direct linking, no direct reads of another team's data store, no

shared-memory model etc… The only communication allowed is via
service interface calls over the network.

 It doesn't matter what technology they use (HTTP, Corba, etc.)

 All service interfaces must be designed from the ground up to
be externalizable. That is to say, the team must plan and design
to be able to expose the interface to developers in the outside
world. No exceptions.

 Anyone who doesn't do this will be fired.

 Thank you; have a nice day!

© PATTERSON, DAVID; FOX, ARMANDO (2012-08-24). ENGINEERING LONG-LASTING SOFTWARE: AN AGILE APPROACH USING SAAS

AND CLOUD COMPUTING. STRAWBERRY CANYON LLC. KINDLE EDITION.

4 SILO VS SOA APPROACH

«Silo» Approach SOA Approach

SERVICE-ORIENTED ARCHITECTURE OF

DISTRIBUTED SYSTEMS

© GLEB RADCHENKO 5

SERVICE-ORIENTED ARCHITECTURE

(SOA)

 Service oriented architecture is a paradigm for
organizing and utilizing distributed capabilities
that may be provided by various owners

 Definition of OASIS (Organization for the Advancement of
Structured Information Standards)

 SOA actually means that components of an
application act as interoperable services, and
can be used independently and recombined in
other applications.

© GLEB RADCHENKO

6

Patterson, David; Fox, Armando (2012-08-24). Engineering Long-Lasting Software: An Agile Approach Using
SaaS and Cloud Computing. Strawberry Canyon LLC. Kindle Edition.

SOA VS OOP

Object-oriented architecture is
based on the essence of the
“object”

 At the heart of SOA lies an
“action”

© GLEB RADCHENKO

7

SERVICES ENCAPSULATE

ACTIONS

© GLEB RADCHENKO

8

COMPONENTS OF A SERVICE-

ORIENTED ARCHITECTURE

1. Service components (services)

2. Service contracts (interfaces)

3. Service Connectors (transport)

4. Service discovery mechanisms (registries)

© GLEB RADCHENKO

9

SERVICE COMPONENTS

 Software components that provide transparent
network addressing.

 Services are open, the self-defined components
that support rapid construction of distributed
applications.

 Services can be fine-grained or coarse-grained.

© GLEB RADCHENKO

10

FINE-GRAINED SERVICE

 Fine-grained service provides an
elementary volume of functional load and
ensures a high degree of reuse.

 You must coordinate the work of several
services to get the result

© GLEB RADCHENKO

11

COARSE-GRAINED SERVICE

 Coarse-grained service provides a high
degree of encapsulation of functionality.

 But makes it difficult to reuse, due to the
narrow specialization

© GLEB RADCHENKO

12

COARSE-GRAINED SERVICE FOR

SOLVING QUADRATIC EQUATIONS

© GLEB RADCHENKO

Solve
equation

ax2 + bx + c
= 0

a = 5; b = 10; c = 3

x1 =-0.3675
x2 =-1.6325

13

ORCHESTRATION OF FINE-GRAINED SERVICES

FOR SOLVING QUADRATIC EQUATIONS

© GLEB RADCHENKO

D

a = 5; b = 10; c = 3

x1 =-0.3675

a2

√a

a+b

a/b

a*b

a,b,c

b

b2

-4*a*c

-4,a,c

b2-4ac

-1,b

√ D

2,a

2a

-b+√ D

14

SERVICE CONTRACTS

 The interface is a description of possibilities
offered by a particular service.

 The interface is defined by:

 The format of the messages

 Input and output parameters

© GLEB RADCHENKO

15

SERVICE CONNECTORS

 Transport provides exchange of information
between the components.

 If you use flexible transport protocols for the
exchange of information between service
components, it improves the software
compatibility of service oriented system

© GLEB RADCHENKO

16

SERVICE DISCOVERY

MECHANISMS (REGISTRIES)

 They are used to locate services with the required
functionality.

 Static discovery: focus on storing information about
rarely changing systems

 telephone exchange station, UDDI

 Dynamic discovery: a system in which there is
frequent appearance and disappearance of the
service components:

 P2P, mobile agents

© GLEB RADCHENKO

17

WEAKLY AND TIGHTLY COUPLED

SOFTWARE SYSTEMS

© GLEB RADCHENKO 18

COHESION OF SOFTWARE SYSTEMS

Cohesion is a degree of knowledge and
dependence of one object from the internal
contents of the other.

Software systems can be divided into 2 types:

1. Tightly (or strong) coupled systems

2. Loosely coupled systems (SOA)

© GLEB RADCHENKO

19

TIGHTLY COUPLED SYSTEMS

 Tight coupling occurs when the dependent class
contains a link directly to a specific class that
provides some possibilities.

© GLEB RADCHENKO

Tester Device

• turnOn()
• turnOff()
• start()
• stop()
• pause()

20

LOOSELY COUPLED SYSTEMS

 Loose coupling occurs when the dependent
class contains a reference to an interface that
can be implemented by one or more specific
classes.

© GLEB RADCHENKO

Tester

Device_Interface

• turnOn()
• turnOff()
• start()
• stop()
• pause()

CD_Player

• turnOn()
• turnOff()
• start()
• stop()
• pause()

DVD_Player

• turnOn()
• turnOff()
• start()
• stop()
• pause()

21

THE BENEFITS OF LOOSELY

COUPLED SYSTEMS

 Decreases the number of relationships between
the components of the system, reducing the
amount of the possible consequences in
connection with failures

 It is possible to increase the working system, by
creating new classes with single interface

© GLEB RADCHENKO

22

