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PROTOCOL

Interaction is based on protocols.

A protocol is a set of rules and 
agreements, describing the 
procedure for interaction 
between components of the 
system.
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5 OSI PROTOCOL STACK

1. Application layer: specific application needs of the user processes. Examples are email, 
bulletin boards, chat rooms, web applications, directory services, etc.

2. Presentation layer: compatibility problems by addressing the syntactic differences in 
data representation. Mime encoding, data compression, and encryption are addressed in 
this layer. Another example is representing structure by using XML.

3. Session layer: the connection between peer processes is established and maintained at 
this level for all connection-oriented communications.

4. Transport layer: the goal of the transport layer is to provide end-to-end communication
between the sender and the receiver processes.

5. Network layer: the network layer provides machine-to-machine communication, and is 
responsible for message routing.

6. Data-link layer: this layer assembles the stream of bits into frames, and appends error-
control bits (like cyclic redundancy codes) to safeguard against corruption of messages in 
transit.

7. Physical layer: this layer deals with how a bit is sent across a channel. In electrical 
communication, the issue is what voltage levels (or what frequencies) are to be used to 
represent a 0 or a 1.
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MESSAGES «MATRIOSHKA»
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TCP/IP

 The most popular protocol stack on the Internet 

 Four layers

Application layer
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Hardware
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IP

 Defines the 
datagram as the 
unit of data 
transmission 

 Specifies the 
Internet address 
scheme 

 Transmits 
datagrams from 
sender to receiver
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TCP/IP

 TCP/IP - transport layer, providing transfer of data from 
the client to the server. 

 Two main protocols: TCP and UDP.
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TCP VS UDP DATA TRANSFER

TCP Data Transfer
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DS – Data stream
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DIRECT MESSAGE TRANSMISSION: 

SOCKETS

© GLEB RADCHENKO 7



DIRECT MESSAGE

TRANSMISSION: SOCKETS

 Uses transport layer directly in the form of Middleware.

 A socket is an abstract object that represents the endpoint of the 
connection.

 TCP/IP socket is a combination of IP address and port number, for 
example, 10.10.10.10: 80.

 Socket interface first appeared in BSD Unix.
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BERKELEY SOCKETS API (1)
15

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection
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BERKELEY SOCKETS (2)16
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SOCKET IMPLEMENTATION

EXAMPLE

C # supports two types of network 
connections:

 Server using the TcpListener class objects;

 the client implemented by using objects 
of the TcpClient class.
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TCPLISTENER AND

TCPCLIENT OBJECTS

 An object of TcpListener class allows only to 
listen to a specific port on your computer. 

 Any processes of data transmission via this 
socket are carried out using the TcpClient 
object. 

 The AcceptTcpClient() method of the 
TcpListener class returns the TcpClient object 
that provides the listening port. 
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SERVER EXAMPLE

using System.Net;
using System.Net.Sockets; 

Int32 port = 13000;

IPAddress localAddr = IPAddress. Parse 
("127.0.0.1");

TcpListener server = new TcpListener (localAddr, 
port);

server.Start ();

//Start listening on port
TcpClient client = server.AcceptTcpClient ();
//After connection create message flow
NetworkStream stream = client.Getstream();
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MESSAGING

Writing messages

Byte [] bytes = new Byte 

[256];

String data = "text";

bytes = 

System.Text.Encoding.UTF. 

GetBytes (data);

stream.Write (bytes, 0, 

bytes.Length); 

Reading messages

Byte [] bytes = new Byte 

[256];

String data = null;

int i = stream.Read (bytes, 

0, bytes.Length);

data = system.text. 

encoding.UTF8.GetString 

(bytes, 0, i);
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