
© GLEB RADCHENKO

DISTRIBUTED COMPUTING

SYSTEMS



THE ROLE OF COMMUNICATION IN

DCS

© GLEB RADCHENKO 3



3
DISTRIBUTED COMPUTING STANDARDS, 

PROTOCOLS AND ARCHITECTURES

1995 2000 201019901985

Remote Procedure 

Call (RPC)

CORBA 

(Common Request 

Broker Architecture)

SOAP 

Web-services
REST

HTTP, HTML 

XML

Client-server 

model

Sockets

WWWNetworks

20051980

Java Remote 
Method 

Invocation (RMI)

JSON

Clouds

© GLEB RADCHENKO



PROTOCOL

Interaction is based on protocols.

A protocol is a set of rules and 
agreements, describing the 
procedure for interaction 
between components of the 
system.

© GLEB RADCHENKO

4



© GLEB RADCHENKO

5

OSI PROTOCOL STACK

Application

Presentation

Session

Transport

Network

Data link

Physical implementation

Application

Presentation

Session

Transport

Network

Data link

Physical implementation

Application Protocol

Presentation Protocol

Session protocol

Transport Protocol

Network Protocol

Channel Protocol

Physical Protocol

Network

FTP, SMTP, HTTP

XML, JPEG, ASCII

PPTP, SMPP

TCP, UDP

IP, IPsec

IEEE 802.11, PPP, PPPoE

Bluetooth, DSL, IRDA



5 OSI PROTOCOL STACK

1. Application layer: specific application needs of the user processes. Examples are email, 
bulletin boards, chat rooms, web applications, directory services, etc.

2. Presentation layer: compatibility problems by addressing the syntactic differences in 
data representation. Mime encoding, data compression, and encryption are addressed in 
this layer. Another example is representing structure by using XML.

3. Session layer: the connection between peer processes is established and maintained at 
this level for all connection-oriented communications.

4. Transport layer: the goal of the transport layer is to provide end-to-end communication
between the sender and the receiver processes.

5. Network layer: the network layer provides machine-to-machine communication, and is 
responsible for message routing.

6. Data-link layer: this layer assembles the stream of bits into frames, and appends error-
control bits (like cyclic redundancy codes) to safeguard against corruption of messages in 
transit.

7. Physical layer: this layer deals with how a bit is sent across a channel. In electrical 
communication, the issue is what voltage levels (or what frequencies) are to be used to 
represent a 0 or a 1.

© GLEB RADCHENKO



Data Network

7

C S
Message

P1

P2
… …

…

Pk

Client Server

Transport layer

TRANSPORT AND NETWORK

LAYER

Network layer

© GLEB RADCHENKO



8

MESSAGES «MATRIOSHKA»

Application protocol header

Presentation protocol header

Session protocol header

Transport protocol header

Network protocol header 

Channel protocol header 

Channel protocol tailing

Message

© GLEB RADCHENKO



9

TCP/IP

 The most popular protocol stack on the Internet 

 Four layers

Application layer

Transport layer

Internet layer

Link lyer

SMTP, HTTP, Telnet, 
FTP etc.

UDP, TCP

IP

Hardware

© GLEB RADCHENKO



IP

 Defines the 
datagram as the 
unit of data 
transmission 

 Specifies the 
Internet address 
scheme 

 Transmits 
datagrams from 
sender to receiver

10

© GLEB RADCHENKO



TCP/IP

 TCP/IP - transport layer, providing transfer of data from 
the client to the server. 

 Two main protocols: TCP and UDP.

11

Слой TCP UDP

Application Data is 
transmitted in 
streams

Data is 
transmitted in 
messages

Transport Segment Packet

Internet Datagram Datagram

Link Frame Frame
© GLEB RADCHENKO



12

TCP VS UDP DATA TRANSFER

TCP Data Transfer
ACK – Acknowledgement
DS – Data stream

HOST A HOST B

Ti
m

e

Countdown timer starts

Acknowledgement received
Countdown timer starts

Countdown timer starts
Countdown timer expires

Acknowledgement received

DS1

ACK1

DS2 (lost)

DS2 (retransmit)

ACK2

. . .

UDP Data Transfer

HOST A HOST B

Ti
m

e

DS1

DS2 (lost)

DS3

. . .

DS4

DS5

DS6



DIRECT MESSAGE TRANSMISSION: 

SOCKETS

© GLEB RADCHENKO 7



DIRECT MESSAGE

TRANSMISSION: SOCKETS

 Uses transport layer directly in the form of Middleware.

 A socket is an abstract object that represents the endpoint of the 
connection.

 TCP/IP socket is a combination of IP address and port number, for 
example, 10.10.10.10: 80.

 Socket interface first appeared in BSD Unix.
© GLEB RADCHENKO

8

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports

client server



BERKELEY SOCKETS API (1)
15

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

© GLEB RADCHENKO



BERKELEY SOCKETS (2)16

© GLEB RADCHENKO



SOCKET IMPLEMENTATION

EXAMPLE

C # supports two types of network 
connections:

 Server using the TcpListener class objects;

 the client implemented by using objects 
of the TcpClient class.

© GLEB RADCHENKO

9



TCPLISTENER AND

TCPCLIENT OBJECTS

 An object of TcpListener class allows only to 
listen to a specific port on your computer. 

 Any processes of data transmission via this 
socket are carried out using the TcpClient 
object. 

 The AcceptTcpClient() method of the 
TcpListener class returns the TcpClient object 
that provides the listening port. 

© GLEB RADCHENKO

10



SERVER EXAMPLE

using System.Net;
using System.Net.Sockets; 

Int32 port = 13000;

IPAddress localAddr = IPAddress. Parse 
("127.0.0.1");

TcpListener server = new TcpListener (localAddr, 
port);

server.Start ();

//Start listening on port
TcpClient client = server.AcceptTcpClient ();
//After connection create message flow
NetworkStream stream = client.Getstream();

© GLEB RADCHENKO

11



MESSAGING

Writing messages

Byte [] bytes = new Byte 

[256];

String data = "text";

bytes = 

System.Text.Encoding.UTF. 

GetBytes (data);

stream.Write (bytes, 0, 

bytes.Length); 

Reading messages

Byte [] bytes = new Byte 

[256];

String data = null;

int i = stream.Read (bytes, 

0, bytes.Length);

data = system.text. 

encoding.UTF8.GetString 

(bytes, 0, i);

© GLEB RADCHENKO

12


