
COMMUNICATION PROTOCOLS:

REMOTE PROCEDURE CALL (RPC)

1

CONVENTIONAL PROCEDURE

CALL

(a) Parameter passing in a local procedure call: the stack before the call to read.

(b) The stack while the called procedure is active.

2

CLIENT AND SERVER STUBS

Principle of RPC between a client and server program.

3

REMOTE PROCEDURE CALLS (1)

A remote procedure call occurs in the following steps:

1. The client procedure calls the client stub in the normal way.

2. The client stub builds a message (marshalling the parameters)
and calls the local operating system.

3. The client’s OS sends the message across the network to the
remote OS.

4. The remote OS gives the message to the server stub.

5. The server stub unpacks the parameters

6. Calls the server implementing the function.
 Continued …

4

RPC WITH VALUE

PARAMETERS

The steps involved in a doing a remote computation through RPC.

5

REMOTE PROCEDURE CALLS (2)

A remote procedure call occurs in the following steps
(continued):

1. The server does the work and returns the result to the stub.

2. The server stub packs it in a message and calls its local OS.

3. The server’s OS sends the message across the network to the
client’s OS.

4. The client’s OS gives the message to the client stub.

5. The stub unpacks the result and returns to the client.

6

PASSING REFERENCE

PARAMETERS
 A pointer is only meaningful in the address space of

the process where it is used.

 One solution is to forbid pointers and reference
parameters in RPC

 More typically, marshalling involves changing the
mechanism to copy/restore

• Actual parameter is sent as a copy

• If the formal parameter is changed, the changed version is
sent back to use as a replacement for the actual

• Optimizations include taking advantage of the direction of
the changes (input only, output only)

• Straightforward for some parameter types (arrays for
example) but not in general.

7

PARAMETER SPECIFICATION

AND STUB GENERATION

(a) A procedure.

(b) The corresponding message.

array represented as a pointer is
copied in the invocation

8

COMMUNICATION PROTOCOLS:

REMOTE METHOD INVOCATION

(RMI)

9

RMI

 RMI = RPC + Object-orientation

 Java RMI

 CORBA

 Middleware that is language-independent

 Microsoft DCOM/COM+

 SOAP

 RMI on top of HTTP

10

REMOTE AND LOCAL METHOD

INVOCATIONS

invocation invocation

remote

invocation
remote

local

local

local

invocation

invocation

A
B

C

D

E

F

11

DISTRIBUTED OBJECTS

Common organization of a remote object with client-side proxy
(loaded when the client binds to a remote object).

2-16

12

DISTRIBUTED OBJECTS

 Remote object references

 An identifier that can be used throughout a distributed system to
refer to a particular remote object

 Remote interfaces

 JAVA RMI: Java interface that extends Remote interface

 Actions: remote invocations

 Remote Exceptions may arise for reasons such as partial
failure or message loss

 Distributed Garbage Collection: cooperation between
local garbage collectors needed

13

RMI PROGRAMMING

 RMI software

 Generated by IDL compiler

 Proxy (client side)

 Behaves like remote object to clients (invoker)

 Marshals arguments, forwards message to remote object,
unmarshals results, returns results to client

 Skeleton (server side)

 Server side stub;

 Unmarshals arguments, invokes method, marshals results and
sends to sending proxy’s method

 Dispatcher (server side)

 Receives the request message from communication module,
passes on the message to the appropriate method in the
skeleton

14

RMI PROGRAMMING

 Binder

 Client programs need a means of obtaining a remote
object reference

 Binder is a service that maintains a mapping from textual
names to remote object references

 Servers need to register the services they are exporting
with the binder

 Java RMIregistry

 Server threads

 Several choices: thread per object, thread per invocation

 Remote method invocations must allow for concurrent
execution

15

JAVA RMI

 Features

 Integrated with Java language + libraries

 Security, write once run anywhere, multithreaded

 Object orientation

 Can pass “behavior”

 Mobile code

 Not possible in CORBA, traditional RPC systems

 Distributed Garbage Collection

 Remoteness of objects intentionally not transparent

16

COMMUNICATION PROTOCOLS:

SOCKET API

17

THE PROGRAMMER'S CONCEPTUAL

VIEW OF A TCP/IP INTERNET

IP

Application Application

TCP UDP

18

SOCKET PROGRAMMING

Socket API

 introduced in BSD4.1 UNIX

 explicitly created, used, released by
apps

 client/server paradigm

 two types of transport service via
socket API:

 unreliable datagram (UDP)

 reliable, byte stream-oriented
(TCP)

a host-local, application-
created/owned,

OS-controlled interface (a
“door”) into which

application process can both
send and

receive messages to/from
another (remote or

local) application process

socket

Goal: learn how to build client/server application that
communicate using sockets

19

SOCKETS AND PORTS

message

agreed port any port socket socket

Internet address = 138.37.88.249 Internet address = 138.37.94.248

other ports

client server

20

SOCKET PROGRAMMING WITH

TCP

Client must contact server

 server process must first be
running

 server must have created
socket (door) that
welcomes client’s contact

Client contacts server by:

 creating client-local TCP
socket

 specifying IP address, port
number of server process

 When client creates socket:
client TCP establishes
connection to server TCP

 When contacted by client,
server TCP creates new
socket for server process to
communicate with client

 allows server to talk
with multiple clients

TCP provides reliable, in-order
 transfer of bytes (“pipe”)
between client and server

application viewpoint

21

CLIENT/SERVER SOCKET

INTERACTION: TCP

Server (running on hostid) Client
 sockfd =
 socket(AF_INET, SOCK_STREAM, 0);

 bind(sockfd, (struct sockaddr *)

&serv_addr,sizeof(serv_addr))

 listen(sockfd,5);

 newsockfd = accept(sockfd, (struct sockaddr

*) &cli_addr, &clilen);

 n = read(newsockfd,…);

 n = write(newsockfd,…);

 close(newsockfd);

sockfd =
 socket(AF_INET, SOCK_STREAM, 0);

connect(sockfd,&serv_addr,sizeof(serv_addr))

n = write(sockfd,buffer,strlen(buffer));

n = read(sockfd,buffer,255);

close(sockfd);

TCP

Connection setup

22

BERKELEY SOCKETS API (1)

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint

Bind Attach a local address to a socket

Listen Announce willingness to accept connections

Accept Block caller until a connection request arrives

Connect Actively attempt to establish a connection

Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

23

BERKELEY SOCKETS (2)

Connection-oriented communication pattern using sockets.

24

