
Artur Andrzejak Dec 21st, 2012

Analyzing Data with Map-Reduce

Prof. Dr. Artur Andrzejak
http://pvs.ifi.uni-heidelberg.de/

artur@uni-hd.de

1

Artur Andrzejak Dec 21st, 2012

INTRODUCTION TO MAPREDUCE

2

Artur Andrzejak Dec 21st, 2012

MapReduce Programming Model

• Re-discovered by Google with goals:
– "Reliability has to come from the software"
– "How can we make it easy to write distributed

programs?"

• A major tool at Google
– 2.2 million jobs in September 2007 (http://goo.gl/dsnDl)
– In 2008 about 100k MapReduce jobs per day

• over 20 petabytes of data processed per day
• each job occupies about 400 servers

3

Artur Andrzejak Dec 21st, 2012

Example: Reverse Web-Link Graph

A Problem suitable for MapReduce:
In a set of html-documents, find out which other
documents point (via links) to it (for each document)

?
?

?

??

?

4

Artur Andrzejak Dec 21st, 2012

Reverse Web-Link Graph: Solution

1. For each link to target t
found in document
source emit (t, source)

2. Sort all pairs by same t's

3. Results are lists:
listt(source) for each t

source
s1 (a, s1)

(b, s1)
(c, s1)

source
s2 (c, s2)

(b, s2)

a: (a, s1)
b: (b, s1) (b, s2)
c: (c, s1) (c, s2)

lista(s1)
listb(s1, s2)
listc(s2, s2)

a

b
c

c

b

parallel MAP

parallel SORT

parallel REDUCE

5

Artur Andrzejak Dec 21st, 2012

Distributed MapReduce Frameworks

• Large data sets require distribution
– e.g. 1000s of map / reduce tasks in parallel

• Not only Google: Hadoop is an open-source
implementation

workersworkers

map

map

…

write <t, source>
to local disks

result file

result file

…

sort

sort

remote
data reads

reduce

reduce

result 1

result k

… … …

t: s1, s2,…master

sort <t, source>
by keys (t's)

I
n
p
u
t

1

2

3 4

5

6

Artur Andrzejak Dec 21st, 2012

What Can Go Wrong?

1. Master failure
2. (Some) workers fail (each with probability p)

– Case 1: Complete failure
– Case 2: Unusual slow execution: stragglers

np)1(1 

• Failures "1" are very rare
• Failures 2 are frequent

– Workers are commodity (low cost) machines
– Recall: given n workers, probability of at least one

"problem" is

7

Artur Andrzejak Dec 21st, 2012

Worker Fault Tolerance in MapReduce

Worker fails completely
• Master pings regularly each

worker
• If not responding, worker is

marked as "dead"
• All his (map/red.) jobs in-

progress are re-executed

Slow execution: stragglers
• Close to completion, masters

schedules redundant execution
of the remaining in-progress jobs

• Overhead is few % …
• … but can reduce time-to-

solution by up to 1/3

Example: sorting 1010 100-byte records (1 TB) with ~1700 workers

normal (with
backup jobs)

with stragglers
(no backup jobs)

normal, but
200 map tasks

killed

891 sec

1283 sec (+44%)

933 sec (+5%)

8

Artur Andrzejak Dec 21st, 2012

ONLINE COMPUTING WITH MAPREDUCE

9

Artur Andrzejak Dec 21st, 2012

Explorative Data Analysis
• Our research at PVS requires

a lot of data analysis
• Usually interactive work:

1. Change parameters /code
2. Re-run
3. Evaluate the results
4. Adjust and repeat

Convert
formats,
clean up

Filter &
aggregate

Generate
features &

labels

Partition in
training/test

Run mining
algorithms

Evaluate &
visualize

Orange: Lots of scripting!

• One of the bottlenecks is
time for the mining
algorithms to finish

• => Shortening it reduces
the total time of exploration

10

Artur Andrzejak Dec 21st, 2012

Time-to-Solution is Important

• Researchers work to a large extend in an "exploratory"
way
– They evaluate last results and decide then on the next job(s)
– Waiting time for a batch computation to finish is called Time-to-

Solution

• Shortening the Time-to-Solution reduces
significantly the total time of exploration

... Computation
Evaluation

&
Decisions

Computation ...

Time-to-Solution

11

Artur Andrzejak Dec 21st, 2012

Online Aggregation

• J. M. Hellerstein, P. Haas and H. Wang introduced in 1997 the
concept of Online Aggregation
– Report online preliminary results (and confidence intervals) for very

large queries

• Shortens „Time-to-Decision“ in an exploratory data study
– Allows to cancel a futile query prematurely
– … Or stop fast if results are precise enough
– Helps to identify early how to drill down data

SELECT AVG(final_grade) from grades
WHERE course_name = `CS186`
GROUP BY major;

12

Artur Andrzejak Dec 21st, 2012

Incremental-Parallel Data Analysis

• By combining preliminary results with parallelization
we get two dimensions of scalability

• We use Map-Reduce to combine both approaches

Degree of exploiting preliminary results

D
eg

re
e

of
 p

ar
al

le
liz

at
io

n Problems beyond
reach of fastest
supercomputers

13

Artur Andrzejak Dec 21st, 2012

MRStreamer
• We implemented MRStreamer - an “enhanced”

version of Hadoop
• It can process data online (“Streaming”)
• … OR in batch mode

threads
S
t
r
e
a
m

map

map

… … group
by key

result 1

result k

threads

reduce

reduce

… …

messages

messages

online
collector

&
visualizer

control

For received <key, val>
forward val to “its” reducer

14

Artur Andrzejak Dec 21st, 2012

MRStreamer

http://pvs.ifi.uni-heidelberg.de/software/mrstreamer/

Features:
• Batch-mode and incremental (online) processing
• Efficient shared-memory processing and “flip-a-

switch” cluster processing
• Hadoop-compatible APIs

15

Artur Andrzejak Dec 21st, 2012

Applications to Data Analysis

• Goal: faster deciding in data analysis studies
– Estimating whether preliminary solution is stable enough
– Detecting changes in data profile

• Example: online convergence graph
– Updates periodically the history of preliminary results

M
is

cl
as

si
fic

at
io

n
ra

te

Seen after 20% is processed

Seen after 40% of input is processed

Training the
Naive Bayes
model for
classifying of
spam emails

16

Artur Andrzejak Dec 21st, 2012

Algorithms

• Simpler algorithms require only one MapReduce pass
– Aggregation (AVG, SUM, …), Linear regression, PCA,

Classification (Naïve Bayes), …

• Challenging are multi-pass algorithms
– For iterative approaches, e.g. clustering via k-means

• Efficiency dictates changes in algorithms / framework

threadsS
t
r
e
a
m

map

map

… … group
by key

result 1

result k

threads

reduce

reduce

… …messages

messages

online
collector &
visualizer

control

Feeding back preliminary results to avoid multiple passes
17

Artur Andrzejak Dec 21st, 2012

K-Means Clustering Algorithm

mappers

compute
k clusters for D1

… …

1

input
partition D1

reducer

merge
centroids for
D1,…,Dn to

global
centroids

…

centroids (D1)

online
collector

compute
k clusters for Dn

n

input
partition Dn

centroids (Dn)

updated
global
centroids

"error" of new
algorithm

"error" of
off-line
(standard)
algorithm

~ larger memory of mappers processed input fraction

"e
rr

or
"

18

Artur Andrzejak Dec 21st, 2012

EXTENSIONS AND ALGORITHMS FOR
ONLINE MAPREDUCE

19

Artur Andrzejak Dec 21st, 2012

More Research Problems

• How to enable machine learning algorithms to work
incrementally (online) and in parallel?

• How to help programmers to access / integrate
MapReduce processing in only few lines of code?

• How to reduce the inefficiencies of the frameworks
for smaller data sets?

20

Artur Andrzejak Dec 21st, 2012

Framework Inefficiences

• Popular Map-Reduce frameworks like Hadoop are
very inefficient for small to medium data sets
• A job with 5 MB (linear regression) needs on Hadoop

30x longer than on a simple “ad-hoc” MapReduce
simulator with 2 threads

• Hadoop startup time is in the range of 10-20 Seconds
• Key Problem: the code + libraries required for

distributed processing introduce overhead not
necessary for smaller data sets

21

Artur Andrzejak Dec 21st, 2012

Efficient Map-Reduce
• Idea: one API but resource-specific framework

implementations
– Dynamic selection of the right infrastructure depending

on the input size
• Challenges: coherent APIs and „semantics“
• First step: MRStreamer

– Both shared-memory and distributed architecture

Developer Single API Infrastructure-Specific
Middleware

Infrastructure
Type

CPU

GPU

Cluster

22

Artur Andrzejak Dec 21st, 2012

Refining our Motivation

• Hadoop is inefficient
compared to custom
shared-memory code

• Programming in M-R style
takes significantly longer

• Big data sets have
specific properties

• Huge data sets are very
rare (or inaccessible)

Why incremental-parallel
processing?

Reduced time-
to-decision

Processing big
data sets

23

Artur Andrzejak Dec 21st, 2012

Which Algorithms Should We Adapt?

• There is a big collection of
machine learning alg‘s
running on M-R
– E.g. Apache Mahout

• Adapting them to
incremental-parallel
processing could be fun …

• But which ones to
choose?

• … Which are really
needed?

24

Artur Andrzejak Dec 21st, 2012

Data Sets: Scale vs. Homogeneity

frequent

targeted

uniform statistical profile

non-uniform statistical profile / highly structured

small size large size

rare
But
well-developed
analysis
methods

non-
existent

If exist:
reduce size by
random
sub-sampling!

25

Artur Andrzejak Dec 21st, 2012

Consequences for Analyzing Large Data Sets
• Some „small-data“ algorithms become useless

– They assume a uniform profile in over all data set
• Other challenges than in „small-data“ machine learning

– Identify and recognize rare patterns
– Split data into sets with homogeneous profile
– Understand and visualize concept drift
– Unify models built on parts of the data

Profile1 Profile2 Profile3 …

homogeneous conceptconcept change

data collected over time

26

Artur Andrzejak Dec 21st, 2012

Identifying Concept Drift in Parallel
• Profile of a modeled phenomenon changes over time

– E.g. Profiles of spam emails evolve within days

• We need a series of models instead of a single one
• Concept drift detection tells us when to switch model
• Algorithms exist for serial case, what about parallelism?

Build a series of models

…

Merge similar
models

Analyze concept
drift

…

Bi
g

D
at

a

gr
ou

p
by

 k
ey

Build a series of models

MAP

M1 M2 M3 …

M6 M7 M8 …

REDUCE

A joint project with I2R, Singapore

27

Artur Andrzejak Dec 21st, 2012

SEQUENTIAL CONCEPT DRIFT
DETECTION

28

Artur Andrzejak Dec 21st, 2012

Classification in a Nutshell
• In classification we want to learn from examples

model f = a function from samples (vectors) to
elements of a finite set (labels)

• Phase 1: Training: we fit/optimize f so that it maps
most accurately training samples to their labels

• Phase 2: Prediction: f is applied to an unknown
sample s to predict its most likely label f(s)

Attribute 1 … Attribute k Labels
Training Sample 1 Thursday 1000 ok

… … … … …

Training Sample N Sunday 106 defect

Unknown Sample Monday 50000 ?

1. training

2. prediction
29

Artur Andrzejak Dec 21st, 2012

Classifiers explained visually
• If we have only two attributes, we can interpret each

sample as a point in R2

• Labels are encoded as colors
• Training: finding a suitable subdivision of the plane

given the (colored) training points

• Model f = a compact
representation of the
subdivision of R2

• Prediction: given a new
sample, find its color =
label

• More metrics => Rd
at

tri
bu

te
 B

attribute A region of the
class "green"

region of the
label "blue"

30

Artur Andrzejak Dec 21st, 2012

Incremental Training

31

• Assume that we have a long table with labeled samples
• We learn a model f incrementally – in order of „new“

labeled samples
• How could we detect a concept shift in this scenario?

labeled samples

f learned in order of new training samples

Artur Andrzejak Dec 21st, 2012

Incremental Training with Testing

32

• After learning f on k first samples, we predict on sample
sk+1 and compare prediction f(sk+1) against true label Lk+1

• Then we use labeled sk+1 to further do training of f
• => So we learn f as before but now also evaluate its

accuracy on each new sample (before learning on it)

labeled samples

Sample

Label

k samples f(sk+1) =

sk+1

Lk+1
f(sk+1) ≠ Lk+1 => error!

Artur Andrzejak Dec 21st, 2012

Error Rate

33

• For each k we can compute the error rate Err(k) as:
– Err(k) = (# errors of f until now)/k

• No concept drift: with each new sample f becomes more
accurate => Err(k) drops

labeled samples

Err(k)

k

Artur Andrzejak Dec 21st, 2012

Error Rate under Concept Drift

34

• If the relationship „sample – label“ changes over time
(i.e. we have concept drift), the Err(k) starts to increase
after some time!

• => By monitoring Err(k) we can detect concept drift

concept change
data collected over time

concept1 concept2 …
Err(k)

k

Artur Andrzejak Dec 21st, 2012

Reset after a Concept Drift

35

• We need a new model after a concept drift!
• If Err(k) reaches a critical level:

– Drop the old model (f1)
– Start learning a new model (f2)
– Reset Err(k)

data collected over time

f1 f2 f3
Err(k)

k

Artur Andrzejak Dec 21st, 2012

Error Rate under Concept Drift

36

• We need a new model after a concept drift!
• If Err(k) reaches a critical level:

– Drop the old model
– Start learning a new one
– Reset Err(k)

data collected over time

f1 f2 f3
Err(k)

k

Artur Andrzejak Dec 21st, 2012

Sequential Concept Drift Detection (CDD)
• The complete algorithm is

more complex (link)
• In addition to the error rate

Err(k) we also monitor:
– minimum Pmin of Err(k)
– minimum Smin of the std.

deviation of Err(k)

We have now two critical levels
• If Err(k) >cwarn*(Pmin+Smin)

then warning signal is issued
• If Err(k) >cdrift*(Pmin+Smin) then

a drift signal is issued

Err(k)

Pmin+Smin

cwarn*(Pmin+Smin)

cdrift*(Pmin+Smin)

warning: start learning
a „reserve“ classifier here

drift: switch to the
„reserve“ classifier here;
reset Err(k), Pmin, Smin

37

Artur Andrzejak Dec 21st, 2012

Sequential CDD /2
• When a warning signal is issued at position w0, a

“reserve” classifier C1 is created
– C1 is trained since w0 but not used (yet); the current classifier

C0 remains the “main” classifier

• When afterwards a drift signal is issued (at position dA):
– We report a concept drift (CD) at d0 and we save or discard C0
– C1 replaces C0: C1 becomes the main classifier
– Minimum Pmin of the error and of variance Smin are resetted

w0 w1 dA w2 w3 dB w4
End of
Stream (E)n0

Start of
Stream (S)

C0: main classifier

C1 is trained

C2
CD

C1 is main classifier
38

Artur Andrzejak Dec 21st, 2012

A More Complex Example

• For a distributed version we use also correctness vectors (CVs)
which are sequences of false/true‘s depending on whether the main
classifier was correct or not on a particular sample
– CVs have associated information about their stream position

• If there are several warnings before a drift, we use the oldest one
(not sure: is this also the case in seq. version?)

• If error(C1) goes below warning level (see n0 above), we discard a
reserve model and create a new (reserve, C2) at next warning (w3)

w0 w1 dA w2 w3 dB w4
End of
Stream (E)n0

Start of
Stream (S)

C0

C1

C2

CVs using C0

CVs using C1

CVs using C2

39

Artur Andrzejak Dec 21st, 2012

PARALLEL CONCEPT DRIFT DETECTION

40

Artur Andrzejak Dec 21st, 2012

Overall Parallel Architecture /1

• We assume that the incoming stream is multiplexed into
chunks, each is sent to a mapper / processor

• Each mapper learns the main (and possibly a reserve)
classifier on its chunks (considered as a single stream)

• Their output (correctness vector (CV)) contains
– Correct labels and
– Labels predicted by the mapper’s current classifier

Data chunk

chunk

chunk

Map 1

Map 2

Map 3 correct /
predicted
labels

correct /
predicted
labels

…

41

Artur Andrzejak Dec 21st, 2012

Overall Parallel Architecture /2

• Reducer collects the input from all mappers
• It computes the global error rate Err(k) over all mappers
• From Err(k) it computes the minima Pmin, Smin and

outputs the levels normal / warning / drift
– This is reducer output stream (ROS)
– Technicality: The levels are labeled with stream positions

Data

Map 1

Map 2

Map 3

Reducer
(computes

error, Pmin, Smin)

reducer
output stream

Mapper
output stream

Mapper
output stream

42

Artur Andrzejak Dec 21st, 2012

Overall Parallel Architecture /3

• Reducer output stream is “feeded back” to the mappers
• Each mapper must react to changes in levels of the

reducer output:
– Normal -> warning: start learning reserve classifier
– Warning -> drift: switch to the reserve classifier

Data

Map 1

Map 2

Map 3

Reducer
(computes

error, Pmin, Smin)

ROS: reducer
output stream

43

Artur Andrzejak Dec 21st, 2012

Reactions to Warning / Drift Events /1

• Here mappers have sent their outputs to reducer which detected
warning at w and drift at d

• What should reducer do (at d) to mimic the sequential algorithm?
• Obviously part of the CV after d is useless because it comes from

(main) classifiers which should have been replaced at d
• Reducer shall discard the CV after d and wait for recomputed and

“correct” CV (coming from a new classifier)
• => When reducer receives chunks of the new & correct mapper

outputs, it assembles them and continues since d

chunkchunk

chunk

chunkchunk

Map 1

Map 2

Map 3

w d
ReducerMapper output (CV)

Reducer output

44

Artur Andrzejak Dec 21st, 2012

Reactions to Warning / Drift Events /2

• Here mappers have sent their outputs to reducer which
detected warning at w and drift at d

• So upon receiving new input from reducer a mapper does:
– For warning at position w: starts learning a reserve classifier at w
– For drift event at d:

• It switches to the reserve classifier at d
• It re-computes own output from d to p_dataEnd and sends it

to the reducer

chunkchunk

chunk

chunkchunk

Map 1

Map 2

Map 3

w d
Reducer

p_dataEnd

Mapper output (CV)
Reducer output

45

Artur Andrzejak Dec 21st, 2012

Summary of Behavior

• Reducer:
– On drift event at d it discards mapper input after d, resets

Pmin, Smin and waits for re-computed, correct mapper
inputs

• Mapper:
– On warning event at w: it starts training a reserved

classifier since (historical) w
– On drift event at d: it switches to the reserve classifier, re-

computes and re-sends all output to reducer
• Note: drift event at d is like a “sync barrier”, it causes all

to stop and re-compute everything since d

46

Artur Andrzejak Dec 21st, 2012

References

• Joos-Hendrik Böse, Artur Andrzejak, Mikael Högqvist:
Beyond Online Aggregation: Parallel and
Incremental Data Mining with Online MapReduce,
ACM MDAC 2010, Raleigh, NC, 2010.

• Artur Andrzejak, Joao Bartolo Gomes: Parallel Concept
Drift Detection with Online Map-Reduce,
International Workshop on Knowledge Discovery
(KDCloud-2012), at IEEE ICDM 2012, Brussels,
December 2012.

47

Artur Andrzejak Dec 21st, 2012

THANK YOU.
QUESTIONS?

48

