
DISTRIBUTED COMPUTING

1

DISTRIBUTED COMPUTING

PARADIGMS

2

3

PARADIGMS FOR DISTRIBUTED

APPLICATIONS

 It is useful to identify the basic patterns or models of
distributed applications, and classify the detail
according to these models.

 Characteristics that distinguish distributed applications
from conventional applications running on a single
machine are:

 Interprocess communication: A distributed application require the
participation of two or more independent entities (processes). To
do so, the processes must have the ability to exchange data among
themselves.

 Event synchronization: In a distributed application, the sending and
receiving of data among the participants of a distributed application
must be synchronized.

 © Prof. Elizabeth White Distributed Software Systems

4

DISTRIBUTED APPLICATION

PARADIGMS

Remote procedure call, remote method invocation

Network services, object request broker

low

high

Level of abstraction

© Prof. Elizabeth White Distributed Software Systems

Client-server

Message passing

5

THE MESSAGE PASSING

PARADIGM
 Message passing is the most fundamental paradigm for distributed

applications.

 A process sends a message, often representing a request.

 The message is delivered to a receiver, which processes the message,
and possibly sending a message in response.

 In turn, the reply may trigger a further request, which leads to a
subsequent reply, and so forth.

Process A
Process B

a message

Message passing
© Prof. Elizabeth White Distributed Software Systems

6 THE MESSAGE PASSING PARADIGM - 2

 The basic operations required to support the basic message
passing paradigm are send, and receive.

 For connection-oriented communication, the operations connect
and disconnect are also required.

 With the abstraction provided by this model, the interconnected
processes perform input and output to each other, in a manner
similar to file I/O. The I/O operations encapsulate the details of
network communication at the operating-system level.

 The socket application programming interface is based on this
paradigm.

 http://java.sun.com/products/jdk/1.2/docs/api/index.html

 http://www.sockets.com/

© Prof. Elizabeth White Distributed Software Systems

http://java.sun.com/products/jdk/1.2/docs/api/index.html

7

DISTRIBUTED APPLICATION

PARADIGMS

Remote procedure call, remote method invocation

Network services, object request broker

low

high

Level of abstraction

Message passing

© Prof. Elizabeth White Distributed Software Systems

Client-server

8

 THE CLIENT-SERVER PARADIGM

Best known paradigm for network applications - the client-server

model assigns asymmetric roles to two collaborating processes.

 One process, the server, plays the role of a service provider which

waits passively for the arrival of requests. The other, the client,

issues specific requests to the server and awaits its response.

..
.

service request

a server process

a client process

a service

The Client-Server Paradigm, conceptual

Server host

Client host

© Prof. Elizabeth White Distributed Software Systems

9 THE CLIENT-SERVER PARADIGM - 2

 Simple in concept, the client-server model provides an

efficient abstraction for the delivery of services.

 Operations required include those for a server process to

listen for and to accept requests, and for a client process to

issue requests and accept responses.

 By assigning asymmetric roles to the two sides, event

synchronization is simplified: the server process waits for

requests, and the client in turn waits for responses.

 Many Internet services are client-server applications. These

services are often known by the protocol that the application

implements. Well known Internet services include HTTP, FTP,

DNS, finger, gopher, etc.

© Prof. Elizabeth White Distributed Software Systems

10 THE MESSAGE SYSTEM PARADIGM

 The Message System or Message-Oriented Middleware (MOM) paradigm is

an elaboration of the basic message-passing paradigm.

 In this paradigm, a message system serves as an intermediary among

separate, independent processes.

 The message system acts as a switch for messages, through which

processes exchange messages asynchronously, in a decoupled manner.

 A sender deposits a message with the message system, which forwards it to

a message queue associated with each receiver. Once a message is sent,

the sender is free to move on to other tasks.

...

...

message system

receivers

sender

© Prof. Elizabeth White Distributed Software Systems

11 THE POINT-TO-POINT MESSAGE MODEL

 In this model, a message system forwards a message from the
sender to the receiver’s message queue. Unlike the basic message
passing model, the middleware provides a message depository, and
allows the sending and the receiving to be decoupled. Via the
middleware, a sender deposits a message in the message queue of
the receiving process. A receiving process extracts the messages
from its message queue, and handles each one accordingly.

 Compared to the basic message-passing model, this paradigm
provides the additional abstraction for asynchronous operations.
To achieve the same effect with basic message-passing, a developer
will have to make use of threads or child processes.

© Prof. Elizabeth White Distributed Software Systems
© Prof. Elizabeth White Distributed Software Systems

12 THE PUBLISH/SUBSCRIBE MESSAGE MODEL

 In this model, each message is associated with a specific topic or
event. Applications interested in the occurrence of a specific event
may subscribe to messages for that event. When the awaited
event occurs, the process publishes a message announcing the
event or topic. The middleware message system distributes the
message to all its subscribers.

 The publish/subscribe message model offers a powerful abstraction
for multicasting or group communication. The publish operation
allows a process to multicast to a group of processes, and the
subscribe operation allows a process to listen for such multicast.

© Prof. Elizabeth White Distributed Software Systems

13
TOOLKITS BASED ON THE MESSAGE-SYSTEM

PARADIGM

 The MOM paradigm has had a long history in distributed
applications.

 Message Queue Services (MQS) have been in use since the
1980’s.

 The IBM MQ*Series is an example of such a facility.

 Other existing support for this paradigm are

 Microsoft’s Message Queue (MSQ),

 RabbitMQ (http://www.rabbitmq.com/)

 Robust messaging for applications

 Easy to use

 Runs on all major operating systems

 Supports a huge number of developer platforms

 Open source and commercially supported

http://www.rabbitmq.com/
http://www.rabbitmq.com/

14

DISTRIBUTED APPLICATION

PARADIGMS

Network services, object request broker

low

high

Level of abstraction

Message passing

© Prof. Elizabeth White Distributed Software Systems

Client-server

Remote procedure call, remote method invocation

15 REMOTE PROCEDURE CALL

 As applications grew increasingly complex, it became desirable to
have a paradigm which allows distributed software to be
programmed in a manner similar to conventional applications
which run on a single processor.

 The Remote Procedure Call (RPC) model provides such an
abstraction. Using this model, interprocess communications
proceed as procedure, or function, calls, which are familiar to
application programmers.

 A remote procedure call involves two independent processes,
which may reside on separate machines. A process, A, wishing to
make a request to another process, B, issues a procedure call to
B, passing with the call a list of argument values. As in the case
of local procedure calls, a remote procedure call triggers a
predefined action in a procedure provided by process B. At the
completion of the procedure, process B returns a value to process
A.

© Prof. Elizabeth White Distributed Software Systems

16 REMOTE PROCEDURE CALL - 2

proc1(arg1, arg2)

proc2(arg1)

proc3(arg1,arg2,arg3)

Process A
Process B

© Prof. Elizabeth White Distributed Software Systems

17 REMOTE PROCEDURE CALL - 3

 RPC allows programmers to build network applications using a
programming construct similar to the local procedure call,
providing a convenient abstraction for both interprocess
communication and event synchronization.

 Since its introduction in the early 1980s, the Remote Procedure
Call model has been widely in use in network applications.

 There are two prevalent APIs for Remote Procedure Calls.

 The Open Network Computing Remote Procedure Call, evolved
from the RPC API originated from Sun Microsystems in the early
1980s.

 The Open Group Distributed Computing Environment (DCE) RPC.

 Both APIs provide a tool, rpcgen, for transforming remote
procedure calls to local procedure calls to the stub.

18

THE DISTRIBUTED OBJECTS

PARADIGMS

 The idea of applying object orientation to distributed
applications is a natural extension of object-oriented
software development.

 Applications access objects distributed over a network.

 Objects provide methods, through the invocation of
which an application obtains access to services.

 Object-oriented paradigms include:

 Remote method invocation (RMI)

 Network services

 Object request broker

 Object spaces

19

REMOTE METHOD

INVOCATION (RMI)

 Remote method invocation is the object-oriented equivalent of

remote method calls.

 In this model, a process invokes the methods in an object,

which may reside in a remote host.

 As with RPC, arguments may be passed with the invocation.

method1

method2

Process 1

Process 2

a remote object

The Remote Method Call Paradigm

remote method invocation

20

DISTRIBUTED APPLICATION

PARADIGMS

low

high

Level of abstraction

Message passing

© Prof. Elizabeth White Distributed Software Systems

Client-server

Remote procedure call, remote method invocation

Network services, object request broker

21

THE NETWORK SERVICES

PARADIGM

 In this paradigm, service providers register themselves with directory servers on a

network. A process desiring a particular service contacts the directory server at run

time, and, if the service is available, will be provided a reference to the service.

Using the reference, the process interacts with the service.

 This paradigm is essentially an extension of the remote method call paradigm. The

difference is that service objects are registered with a global directory service,

allowing them to be look up and accessed by service requestors on a federated

network.

 XML Web Services technology is based on this paradigm.

Service requestor

Directory service

service object

22

 THE OBJECT REQUEST

BROKER PARADIGM

 In the object broker paradigm , an application issues requests to an

object request broker (ORB), which directs the request to an

appropriate object that provides the desired service.

 The paradigm closely resembles the remote method invocation

model in its support for remote object access. The difference is that

the object request broker in this paradigm functions as a middleware

which allows an application, as an object requestor, to potentially

access multiple remote (or local) objects.

 The request broker may also function as an mediator for

heterogeneous objects, allowing interactions among objects

implemented using different APIs and /or running on different

platforms.

 Object

Requestor
Object

Object Request Broker

